The joint decision of labour supply and childcare in Italy under availability constraints

Francesco Figari ¹ and Edlira Narazani ²

¹ University of Insubria and ISER - University of Essex ² University of Insubria and University of Turin

Research question

How can maternal labour supply (and childcare usage) be affected by relaxing the existing constraints in terms of childcare availability and costs?

Overview

- First attempt to estimate a joint structural model of labour supply and childcare decisions applied to Italy.
- low female labour market participation
- low public childcare coverage rate and high fees
- increasing share of children with a disadvantaged background
- Previous studies on Italy.
 Child care and...
- children's cognitive ability (Brilli et al., 2013)
- labor market participation of mothers (Del Boca 2002, Del Boca and Vuri 2007, Del Boca et al., 2009)
- determinants of child care choice (Del Boca et al., 2005)
- However, a structural approach is particularly informative given that allows one to estimate the changes in family choices under different policy simulation scenarios.
- We do consider public,
 private and informal childcare,
 with related imputed
 availability and costs and the
 interactions with the whole
 tax-benefit system

Data

• IT-SILC 2010

Data issues!

- -774 mothers with (at least) a chid 0-2 and a partner working full time.
- Imputed expected child care cost at regional level: rationing and differentiated fees
- Granparents proximity

 Info on grandmothers in good health living within
 16km predicted from
 Multiscopo data (Del Boca, Locatelli and Vuri, 2005)

• EUROMOD

- EU-wide tax-benefit microsimulation model to calculate disposable income in each choice
- Public childcare fees (out of pocket) and costs
- Tax concessions for childcare

Institutional background

Modelling framework

Static structural discrete choice model of labour supply and childcare

- Labour supply choice set B: not working, short PT, long PT, FT
- Childcare choice set S: maternal care, formal child care, informal child care
- We assume a «fixed link» (Ilmakunnas, 1997) between labour supply and child care: only 9 choices considered

Utility function, with error term IID extreme vale distributed

$$U(f(wh,I),h,k,s) = v(f(wh,I),h,k,s)\varepsilon(j)$$

Choice probability function

$$\varphi(h, w, k, s) = \Pr(U((f(wh, I), h, k, s) = \max(U(f(xy, I), y, z)) = \frac{v(w, h, s)p(w, h, s)}{\iiint v(w, h, s)p(w, h, s)dxdydz})$$

Systematic part of the utility function

$$\log v(C, h, s) = \alpha \frac{C^{\lambda} - 1}{\lambda} + \beta \frac{L^{\delta} - 1}{\delta} + \rho \frac{(C^{\lambda} - 1)(L^{\delta} - 1)}{\lambda \delta}$$

Disposable income net of expected child care cost

$$E(xcc) = COST_{public} x \frac{COVER_{public}}{FORMAL\,RATE} + COST_{private} x (1 - \frac{COVER_{public}}{FORMAL\,RATE})$$

Preference estimates

		Estimate St	andard error			Estimate St	andard error
Preferences				Density of offered hours			
Income				Part Time	$\pi 1$	-5.922	0.406 ***
Constant	α0	2.733	1.132 ***	Full Time	$\pi 2$	-3.17	0.256 ***
log(age/10)	α1	-2.085	0.895 ***				
Children	α2	0.475	0.217 ***	Density of Formal Child Care			
Formal Care	α3	0.085	0.052	θ2	θ 2	-0.335	0.546
Exponent	γ	1.466	0.180 ***	Foreign	μ12	-0.851	0.289 ***
				Coverage	μ22	4.352	1.234 ***
Leisure				Having brother	μ32	0.481	0.209 ***
Constant	β0	4.202	0.86 ***	μ2	$\mu 2$	5.611	0.77 ***
log(age/10)	β1	-1.077	0.674 *				
Children	β2	0.626	0.183 ***	Density of Informal Child Care			
Formal Care	β3	0.077	0.197	θ3	θ4	-1.369	0.167 ***
Exponent	δ	0.408	0.072 ***	South	μ13	-1.291	0.235 ***
				Grandparents proximity	μ23	4.361	0.509 ***
Leisure*Income	ρ	0.049	0.048	μ3	μ3	3.636	0.749 ***
Density of offered hours				Log-likelihood		-	-1368.83
Part Time	$\pi 1$	-5.922	0.406 ***	Number of observations			774
Full Time	$\pi 2$	-3.17	0.256 ***	Wald chi2			9.64
-				Prob>chi2			0.022

Simulation results

Coverage rate increased up to 30% in each region – by macro area

	% change in	% change in		
Area	Intensive margin	Extensive margin	Disposable income	
North West	11.44	11.56	2.48	
North East	13.9	14.02	2.32	
Centre	13.8	13.9	2.09	
South	46.62	46.91	8.7	
Islands	34.32	34.54	8.98	